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​1​ Executive Summary 

The analysis of data streaming from on-line instruments, large scale simulations, and distributed sensors              
now enables near real-time steering and control of complex systems such as scientific experiments,              
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transportation systems, and urban environments. There has been an explosion of new research and              
technologies for stream analytics arising from the academic and private sectors, but there has been no                
corresponding effort in either documenting the critical research opportunities or building a community that              
can create and foster productive collaborations. To ameliorate this situation, we are organizing two              
workshops - STREAM2015 and STREAM2016. This report describes the discussions, outcomes and            
conclusions from STREAM2015, the first of these workshops. 
 
We define a ​stream to be a possibly unbounded sequence of events. Successive events may or may not                  
be correlated and each event may optionally include a timestamp. Exemplars of streams include              
time-series data generated by instruments, experiments, simulations, or commercial applications          
including social media posts. Steering is defined as the ability to dynamically change the progression of                
a computational process such as a large-scale simulation via an external computational process.             
Steering, which is inevitably real-time, might include changing progress of simulations, or realigning             
experimental sensors, or control of autonomous vehicles. Streaming and steering often occur together.             
An example could be for an exascale simulations where it is impractical to store every timestep and the                  
data must be reduced, resulting in streams which may constitute the final results from the simulation in a                  
manner similar to the way we use data from an instrument in a massive physics experiment. 
 
The goal of the STREAM 2015 interdisciplinary workshop was to identify application and technology              
communities working in the broad areas of streaming, steering and their intersection, and to clarify               
challenges that they face. We solicited white papers on related topics from the community. The white                
papers submitted covered a mixture of applications and technologies. The final workshop program             
included 43 attendees and 29 talks that included 17 accepted papers and other invited talks, four                
breakout sections and three plenary discussions. We also identified research challenges and future steps              
for community engagement. The discussions from the workshop are captured as topic areas covered in               
this report’s sections. The workshop identified four important research directions driven by current and              
future application requirements.  
 
Programming Models: There is tremendous diversity and churn in stream analytics programming            
models and systems and no common understanding of application requirements, making them impractical             
to compare directly. There is a need to research and develop programming models and computational               
paradigms that can raise the level of abstraction to simplify the programming tasks for end-users.  
 
Algorithms: Challenging stream analytics problems arise from applications where the complexity and            
scale of these unbounded events are such that they cannot be analyzed at the rate they are produced                  
with traditional batch algorithms. The workshop attendees suggested a variety of compelling research             
topics including adaptive sampling, online clustering, sketching and approximation that trade space and             
time complexity for accuracy. 
 
Steering and Human in the Loop: In many cases it is essential that a human guides the automatic                   
responses to event streams. Research ranging over systems, visualization and human computer            
interaction is needed to integrate human and computing knowledge in decision processes. 
 
Benchmarks and Application Collections: We require an understanding of the true complexity and             
breadth of application needs to make true progress on algorithm, programming models and software              
systems for stream data analytics and steering. Similar to “grand challenges” in domain sciences, the               
development of a series of “representative” streaming and steering examples will be of enormous value.               
These should include representative data sets at scale and individually clean simple mini-applications. 
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The workshop participants felt that the diverse nature of the nascent community was well represented by                
the diverse group of attendees and the topics presented, but that the topic is in need of further attention                   
because of its growing importance. There is a strong support for establishing and enhancing this               
community and supporting and expanding the role of ​http://streamingsystems.org​.  

​ 
 
 

​2​ Introduction 

STREAM2015 grew out of NSF ACI’s Dear Colleague Letter (DCL) [DCL15053] to the community to               
identify the gaps, requirements and challenges of future production cyberinfrastructure beyond traditional            
HPC. The NSF has a long track record in production cyberinfrastructure to support HPC applications, but                
arguably a less consistent record in deploying and supporting infrastructure for the rich space of               
distributed applications. Given the trends in data, instrumentation and scientific computing, an area of              
particular interest was the investigation of the landscape -- systems, middleware and applications --- at               
the integration point of HPC, data-intensive computing and real-time computing as required by large              
scientific instruments and projects: streaming and steering lie at the heart of the overlap. Given DOE’s                
mission, it was not a coincidence that these topics were of interest and relevance to ASCR at DOE. Thus,                   
was born the coordinated NSF and DOE efforts to organize STREAM 2015 and STREAM 2016. 
 
The analysis of data streaming from on-line instruments, large scale simulations and distributed sensors              
now enables near real-time steering and control of complex systems such as scientific experiments,              
transportation systems and urban environments. There has been an explosion of new research and              
technology for stream analytics coming from the research and private sectors, but many of the activities                
are disconnected. This report describes the outcomes and conclusions from the first of two workshops,               
STREAM2015 and STREAM2016, that brings together a wide range of practitioners and stakeholders to              
cover the full breadth and potential of this topic. Significant effort was made to cover government, industry                 
and academic activities. 
 
We solicited white papers on related topics from the community for STREAM2015. The white papers               
submitted covered a mixture of applications and technologies. 17 white papers were accepted and are               
listed in sec. 8.3 with links to posted versions. The white paper authors and several additional participants                 
from academia and industry were invited to the STREAM2015 workshop that covered a rich selection of                
applications, algorithms and software systems. The final workshop program included 29 talks, four             
breakout sections and three plenary discussions with 43 attendees.  
 
This report is arranged into three major sections: State of the art; Next steps and research directions;                 
Building and sustaining a streaming system community. These capture the workshop discussions and             
presentations/white papers and are followed by a summary with appendices listing participants,            
presentations (labelled [Pnn]), white papers (labelled [WPnn]) and citations (labelled [nn]). 
 
We provided working definitions for streaming and steering; it is thus important to clarify stream               
processing. Stream processing is characterized by (i) operations on sections of data much shorter than               
the overall length of the stream, (ii) sections are processed in a (partially) ordered way, and (ii) the                  
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streaming process keeps a (potentially distributed) state between processing of data sections and there is               
no possibility of analyzing a previously processed data section. 

​3​ State of Art 

Streams can be characterized by concurrent sequences of events, which might be associated with              
timestamps as in social media posts or time series generated from one or more instruments, experiments,                
simulations, or commercial applications. Steering might include steering simulations or realigning           
experimental sensors, or control of autonomous vehicles. Both of these cases were covered in workshop               
and presentations on current state of the art set the scene for futures discussion; in particular                
identification of research challenges and future steps for community engagement covered in secs. 4 and               
5. 
 
Processing of streaming data is being addressed by many communities including industry, many             
branches of academic research and national laboratories [Survey16]. The goal of the STREAM 2015              
interdisciplinary workshop was to identify application and technology communities working in this area             
and to clarify challenges that they face. The workshop focused on application features and requirements               
covered in sec 3.1 as well as hardware and software needed to support them covered in sec. 3.2. Sec 3.3                    
covers the special topic of HPC-Big Data convergence. 

​3.1​ Exemplar applications: Characteristics of Applications, 

Industry-Science differences. 

​3.1.1​ Application Categories and Exemplars 

Streaming/Steering Application  
Class 

Details and Examples Features Talks, WPs 

1 Industrial Internet of Things,    
Cyberphysical Systems, DDDAS,   
Control 

Software Defined Machines,   
Smart buildings, transportation,   
Electrical Grid, Environmental   
and seismic sensors, Robotics,    
Autonomous vehicles, Drones 

Real-time response  
often needed; data   
varies from large to    
small events 

WP2,8,10,14
,17 
P2,10,11,14,
16,19,20,27 

2 Internet of People: wearables Smart watches, bands, health,    
glasses, telemedicine 

Small independent  
events 

P1 

3 Social media, Twitter, cell    
phones, blogs, e-commerce and    
financial transactions 

Study of information flow, online     
algorithms, outliers, graph analytics 

Sophisticated 
analytics across  
many events; text   
and numerical data 

P1,3,12,13, 
18 

4 Satellite and airborne monitors,    
National Security: Justice,   
Military 

Surveillance, remote sensing,   
Missile defense, Anti-submarine,   
Naval tactical cloud   
[NavyCloud14] 

Often large volumes   
of data and   
sophisticated image  
analysis 

WP13 
P28,29 

4 



5 Astronomy, Light and Neutron    
Sources, TEM, Instruments like    
LHC, Sequencers 

Scientific Data Analysis in real     
time or batch from “large”     
sources. LSST, DES, SKA in     
astronomy 

Real-time or  
sometimes batch, or   
even both. large   
complex events 

WP1,5,6,9, 
12 
P4,5,6,15,26 

6 Data Assimilation Integrate typically distributed data    
into simulations to enhance    
quality.  

Link large scale   
parallel simulations  
with time dependent   
data. Sensitivity to   
latency. 

WP3 
P21 

7 Analysis of Simulation Results Climate, Fusion, Molecular   
Dynamics, Materials. Typically   
local or in-situ data. HPC Big Data       
Convergence 

Increasing 
bottleneck as  
simulations scale in   
size. 

WP1,4,7,11 
P5,7,9,23,24 

8 Steering and Control  Avionics. Control of simulations    
or Experiments. Network   
monitoring. Data could be local or      
distributed 

Variety of scenarios   
with similarities to   
robotics 

WP7,15 
P5,9,17,25 

Table 1: Eight Streaming and/or Steering Application Classes 
 
Applications cover a wide range. As one example, for exascale simulations where it is impractical to store                 
every timestep, it may be necessary to do in-situ analysis of critical indicators from each step which can                  
then be used to modify simulation parameters or context on the fly. The resulting streams from the in-situ                  
analysis may constitute the final results from the simulation in a manner similar to the way we use data                   
from an instrument in a massive physics experiment. As another example, smart city sensors generate               
streams of data that capture the health and state of an urban environment. Analyses of these data                 
streams can guide city planners and emergency responders.  

 
We surveyed the field and identified application classes including Internet of People, Social media,              
financial transactions, Industrial Internet of Things, Dynamic Data Driven Applications Systems (DDDAS)            
[DDDAS15], Cyber-physical Systems, Satellite and airborne monitors, National Security, Astronomy, Data           
Assimilation, Analysis of Simulation Results, Steering and Control and Instruments like the Large Hadron              
Collider(LHC), high-energy x-ray sources, and sequencers. Although, streaming applications differ widely           
e.g., in the type of science they support (simulations versus experiments), a large fraction of them can be                  
understood using a few common characteristics, e.g, in whether they are distributed or not, size of                
streamed data unit, whether they have real-time constraints etc. This allows introduction of application              
classes summarized in table 1 which also lists presentations and white papers discussing each class.               
Note that these contributions are sometimes technology and sometimes application focussed; the            
technology contributions often give use cases that are used for listing them in table 1. 

 
There were several applications brought up during the workshop. Some examples include microbiome             
and metagenomics which were not in any of the formal contributions but likely to grow in need for                  
streaming processing.  

● UAV monitoring for oil and gas exploration use case noted the complexity of the analysis of radar                 
images; harder than related optical images seen in surveillance applications. Size is another             
issue; The size of radar images are several times bigger than optical images because they               
contain phase and polarization information in addition to intensity value.  
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● The LHC physics use case is also one when current batch processing is moving to a more                 
dynamic model which is essentially streaming. This allows easier use of opportunistic resources             
such as Amazon and NERSC available cycles and to avoid the complex replica schemes in data                
grids. Similarly, photon science experiment workflows are becoming increasingly automated, and           
are coupling detector data sources to high-performance computers for near-real-time analysis           
[P4]. 

● The DDDAS Avionics application [P25] in the steering and control category ​brought up some              
important issues including the role of bad data and its recognition detection especially by              
automated systems used today in aircraft. We often need to support sophisticated application             
sitting on top of streaming such as simulations to give feedback on how to respond to data.                 
Cyber-physical system applications like the ​Smart Grid, IIOT (Industrial Internet of Things) or IOB              
(Internet of Buildings) are growing rapidly -- interoperability, anonymization, and need to integrate             
diverse data are important. The trade-off between anonymization and utility in the Array of Things               
was highlighted.  

● TEM produces streams of connected images with human in the loop with the need to preserve                
message (image) order. Network monitoring can be viewed as streaming data with network             
routing becoming a dataflow graph.  

● The Square Kilometer Array telescope SKA -- shifts mechanical engineering (100 square meter             
mirror) to computing (lots of one square meter mirrors). Here “steering” will be used to update in                 
real time the corrections for atmospheric and mechanical effects on the observed data; and more               
generalised stream processing will be used because it is too expensive to contemplate keeping              
all of the observed data and therefore it must be processed into reduced data production.  
 

The discussion noted some differences between industry and research applications. One was event size              
-- these are often large in research use cases. Another was approach to getting needed performance;                
industry might “just” add more nodes to improve performance; this is typically considered too costly for                
research applications. Finally SQL important in many industry deployments but its broad value in science               
is not so clear. 

​3.1.2​ Application Characteristics 

Several characteristics were highlighted that could be used to develop a more detailed classification than               
table 1 and in deriving requirement for processing system. These include the size of events; the use of                  
control or steering; the connection between events such as their ordering and stateful event processing;               
use of human in the loop for feedback; universality of interfaces; adaptive pipelines needed in research                
today; need to identify the important information “rapidly”; access control; adaptive flow control; the              
challenge of real-time data assimilation; complexity of data in individual events; need for fault tolerance;               
provenance especially in adaptive applications where data result of previous workflow; accuracy and use              
of sampled data; error recovery - problematic data will choke when passed through the algorithm again;                
what are data structures and appropriate storage matching hardware and application needs.  
 
Synchronization might be needed to produce for example a coherent state (see [P13] for a clustering                
example) but this is hard with inherently distribution asynchronous data sources and processing. It is               
useful to understand the latency that can be tolerated between data collection and processing data.               
Coupled streams, multiple streams and interaction of streams with distributed data are important in some               
cases. The response time is important for UAV applications and robots; it is not so critical for e-commerce                  
transaction streams. The needed data longevity is unclear-- some fields assume data is kept all the time                 
but where do you store it and what is the cost. We need to characterize the value of data - how much data                       
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are we willing to lose during the processing? Application processing can be characterized by the               
complexity of processing, the possible need for a quick turnaround, offline or online mode etc. We can                 
distinguish between two types of streaming applications - firstly a closed process that runs for long-time,                
and secondly adaptive computation with lot of human involvement. The latter is seen in processing of                
experimental data with adjustments to data-gathering equipment based on analysis of results. Some             
science applications require high-speed, fully automatic and complex adaptive processing. Here it is often              
not cost-effective to make an automated pipeline for each case. 

 
Within large scale simulations, there are event streaming techniques which will be essential, as every               
snapshot can’t be saved. This is category 7 in table 1. We also noted that steering (category 8 in table 1)                     
is pervasive; in particular sensors sometimes need to be steered 

 
There is a need to respond to variable rates or load changes such as between peak and non-peak hours.                   
This requires an elastic system capable of dynamic scalability based on the changing rates. This creates                
interesting programming paradigms involving unbounded data with sliding windows with the need to             
detect changes between windows. 

 
In most cases, the data is distributed, which affects synchronization, parallelism and algorithms. One              
needs to characterize workflows better; for example where are computations done - are they close to the                 
source of the data or does data stream to the cloud? This is exemplified by comparison of Akamai edge                   
vs Google server farms. There is a well known discussion of three processing locations: sensor (source),                
fog (computing near source) or cloud (back-end). Does it matter which cloud one chooses as location will                 
affect turnaround? Does the sensor’s connectivity facilitate certain processing modes or does it constrain              
processing modes - the answer could be time dependent. Does the processing (cloud) need to be self                 
distributed? One needs to address the case with no cloud connection (at a particular time). What aspects                 
of processing are sensitive to hierarchical (sensor-fog-cloud) programming model; does query processing            
get decomposed at all levels? What parts of system need to talk to all services/nodes? How much can be                   
done at each level of hierarchy?.  

 
Projects such as large telescopes or accelerators with long timelines need to consider timeline of evolving                
technologies for streaming data as industry is driving rapid change. One can identify needed functions               
and components and if one programs to this high level model, it should be easier to incorporate                 
underlying technology change.  

 
The availability of test data - where security and privacy concerns prevents wider release - needs to be                  
addressed as in sec. 4.3. We need better anonymization techniques or privacy policy changes 

​3.2​ Current solutions -- Industry, Apache, Domain-Specific 

​3.2.1​ Particular Solutions 
Three impressive solutions from industry -- Amazon [P1], Google [P3] and Microsoft [P18] -- were               
described. Although operating at large scale their uses like e-commerce and logging transactions have              
important differences from the research applications discussed in sec. 3.1. Amazon has Kinesis             
streaming software, Google Cloud Dataflow supporting general Big Data analytics while Microsoft has             
introduced Trill-based Azure Analytics as a high-performance in-memory incremental analytics engine.           
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This first class (commercial) of streaming software infrastructure can be compared with three others              
presented at the workshop.  
The second set consists of solutions [Survey16] built around open source Apache solutions like Samza               
([Samza15]​, ​[WP16] and [P22]) or Storm ([Storm15], [WP17] and [P19]). One could consider latter as the                
previous generation of Industry solutions as Samza came from LinkedIn and Storm from Twitter.  
The third set consisted of current domain-specific solutions used today in different observational science              
areas. As described in sec. 3.1, we heard about technology for Astronomy, Light Sources, LHC, Smart                
Grid, Array of Things, IIOT, UAV, Avionics and simulations. Early academic work includes Aurora              
[Cherniack03]​, Borealis ​[Abadi05]​, StreamIt [Thies02] and SPADE ​[Gedik08]​.  
As the fourth category we can put research software designed for general streaming applications. These               
included SEEP [Seep15], StreamMapreduce (​[Streammine15], ​[WP2] and [P20]), Workflow ([WP3] and           
[P21]), cloud video streaming ([WP13] and [P28]), HPC (exascale) technology ([WP11] and [P23]) and an               
academic approach Neptune [P16] ​[Neptune16] ​with a similar architecture to the Apache solutions. In              
contrast StreamMapReduce [P20] offers MapReduce with a built-in streaming engine with fault tolerance             
and elasticity and supporting SQL, CQL and K3. Time Windows permit the definition of a dataset to                 
operate on in StreamMapReduce. SamzaSQL [P22] builds on Apache Kafka [Kafka15], Samza and             
Calcite with monitoring use cases from Linkedin. IoTCloud [P19] adds parallel processing and low latency               
to Storm so as to support the use of back-end clouds controlling robots. MPI is not designed for streaming                   
and a library to support streaming is added [P23] with special benchmarks and a comparison between                
MPI I/O and Streaming I/O. 

​3.2.2​ Technology Challenges and Features 

Integration of the many technologies to build “end-to-end” streaming infrastructure is a basic challenge as               
is the lack of consensus as to appropriate hardware and software infrastructure. Other issues identified               
included securing data; dynamic provisioning of cloud resources to reduce cost; connecting different             
programming models in streaming environment; supporting online algorithms; understanding concept of           
time and space with respect to streaming data; use of both legacy applications and new online algorithms                 
together in a scaling fashion; use of and identification of reusable components; need for data               
management to be scalable and dynamic; impact of non-volatile memory, and GPU’s, which currently are               
outside streaming frameworks.  

 
We discussed state of the open source software and industry participants noted Storm (and Spark               
[Spark15] and Flink [Flink15]) was really obsolete and a new hardened version is needed. Amazon               
Kinesis can drive Apache Storm but latter does not scale well enough to use in large production systems                  
like Amazon Kinesis. Neptune has higher performance than Storm in analysis reported in [P16]              
[Neptune16]. Apache Flink, building on EU Stratosphere, is a current favorite cloud programming             
environment and supported in Google Cloud Dataflow. For industry, interoperability is a difficulty for              
linking many manufacturers and data sources. 

 
The hierarchical sensor-fog-cloud model is not supported in today’s systems which focus on the backend               
(cloud) solution. 

​3.3​ Connections - Streaming + HPC convergence. Role of workflow.  

The issues at the intersection of streaming and HPC were discussed in several white papers [WP1, WP3,                 
WP4, WP5, WP6, WP11, WP12] and associated presentations [ P4, P5, P7, P9, P17, P21, P23, P24].                 
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One reason to explore this intersection is that ​commercial solutions are not converging with the needs of                 
science big data. Another is that resources available for large scale research applications are typified by                
NSF resources configured as HPC clusters. 

 
One HPC-Streaming intersection is the analysis of visualization data streamed from HPC simulations. As              
I/O is limited, this analysis is usually done in situ on the machine hosting the simulation. The role of new                    
exascale runtime for streaming should be investigated in both these cases. The new exascale-motivated              
approaches are more dynamic and could be more effective than traditional MPI for streaming. We need to                 
understand the interaction between big and streaming data and the connection between in-situ data              
processing and big machines.  
 
There is a need for a deeper coordination between the HPC and streaming communities. There are                
similarities between workflow and stream communities with for example Swift from Chicago supporting             
MapReduce implemented with MPI. We could learn from workflow and in particular from the difficulties in                
promoting interoperable workflow solutions. 

 
Particular issues discussed included the role of storage and networks in streaming; the impact of RDMA                
networks on streaming; the impact of SDN on streaming; the I/O performance and architecture needed on                
HPC machines to support streaming; the need to benchmark HPC vs Cloud solutions with architectural               
differences and optimization differences; connection with hardware vendors. 

 
There is perhaps a disconnect between HPC and BigData software stacks in the areas of performance                
and architectural components e.g. HPC might use Slurm and Big Data (streaming) Yarn or Mesos for                
cluster management/scheduling. We need to engage with XSEDE and XSEDE ECSS to understand             
better how to do streaming on big NSF resources and look at usability and performance issues. 

​4​ Next Steps and Research Directions 

The workshop Identified several important research directions driven by current and future application 
requirements. These are covered in following sub-sections. 

​4.1​ New Algorithms 

Some of the most challenging stream analytics problems arise from applications where the complexity              
and scale of unbounded streams are such that they cannot be analyzed at the rate they are produced                  
with traditional batch algorithms. Consequently we need different algorithms that can reduce the             
complexity of the analysis and there is an active computer science research here but limited practical                
experience. The workshop attendees suggested a variety of compelling research topics including            
adaptive sampling, online clustering [Guha13] and sketching.  
 
Sketch algorithms provide approximate results for queries performed over voluminous datasets. This is             
achieved by using data structures that serve as a surrogate (or a sketch) for the actual dataset, and then                   
using this data structure to evaluate queries. More importantly, the space-complexity or memory footprint              
of this data structure is independent of the underlying voluminous dataset. Examples of such algorithms               
include the well-known Bloom Filter that can be used to evaluate set memberships. The Bloom Filter may                 
produce false positives on set memberships, but will never produce a false negative [Bloom70]. The               
HyperLogLog algorithm is a probabilistic estimator for approximating the cardinality of a dataset             
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[Flajolet07]. The Count-Min algorithm effectively approximates the frequencies of elements within a            
dataset that has repeated elements [Cormode12]. In essence the space complexity (size of sketch)              
trade-off becomes a time-complexity versus accuracy trade-off. Frequent itemset mining over data            
streams [Freq04][Freq05][Freq06], stream classification [Classify00] and streaming clustering algorithms         
[Cluster02][Cluster03] are well known but needs to be applied in massively parallel settings.  
 
In workshop presentations, [WP1] [P5] [P7] described streaming Principal Component algorithms PCA            
and the identification of “heavy hitters” (mass concentrations) corresponding to galaxy halos in             
astrophysical simulations. [P13] described parallel online clustering algorithms to find Twitter memes            
(information concentrations) using Apache Storm environment. [Storm15] [WP10] [P11] described          
baseline methods for electrical grid data understanding. 

 
The NRC Frontiers in Massive Data Analysis report identifies 7 “computational giants” which are              
essentially algorithmic challenges. These seven are Basic Statistics; Generalized N-Body Problems;           
Graph-Theoretic Computations; Linear Algebraic Computations; Optimizations; Integration and Alignment         
Problems. They remark that two of the most pervasive strategies for achieving computational efficiency              
are sampling and parallel/distributed computing. They back this up with a full chapter on “Sampling and                
Massive Data”. Further they identify 4 common themes. 

 
1) State-of-the-art algorithms exist that can provide accelerations of major practical 

importance, by significantly changing the runtime order, for example, from O(N​2​) to O(N 
log N). 

2) High dimensionality in the number of variables is a persistent challenge to obtaining 
computational efficiency, and this demands ongoing research effort. 

3) The “non-default” settings (default is sequential in memory algorithms)—streaming, 
disk-based, distributed,  multi-threaded—are quite important, yet mostly under-explored 
in terms of research effort. More broadly they note below that many key ideas have been 
proven in principle but not yet applied broadly in practice. This includes for example the 
O(N logN) algorithms mentioned in first theme. 

4) Most of the best fast algorithms described in the computational giant section have only 
been demonstrated in research implementations. More work is required to create robust 
and reliable software before these algorithms can be used widely in practice. 

 
Sampling was discussed in the meeting including: sampling improving performance; the sketch concept             
which is a smaller but representative dataset; the general issues of approximation and accuracy and the                
trade-off between accuracy and time complexity; socially coupled systems have intrinsic inaccuracy;            
where, when and what to sample is a challenge; error bounds with sampling; need for users to                 
understand algorithms with approximations and be able to make good choices. Incremental accuracy was              
discussed with initial sample results being improved as the data increases in size. 

 
Streaming and online algorithms clearly are very promising and in some cases essential to satisfy               
compute/time complexity constraints. These algorithms are characterized by only using the data once             
whereas typical iterative batch algorithms go over the data many times. Sampling can go further and only                 
use a subset of the data once (or in a batch sampling many times). The concept of training is not clear in                      
the sampling class of algorithm. Note that streaming algorithms are a distinct idea from real-time               
algorithms. 

 
In accord with NRC report, the workshop identified need for scalable parallel algorithms covering              
multicore and parallel computing. Information visualization and dimension reduction (illustrated by PCA            
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presentation [P5]) was also emphasized and covered by NRC. Dimension reduction is linear (e.g. PCA) or                
nonlinear (e.g. MDS) and comparison of these approaches is needed for streaming data. 

 
Classical batch algorithms such as probabilistic Models, classifiers, Bayesian, Markov, Classical EnKF            
(Ensemble Kalman Filtering in Data Assimilation), Umbrella Sampling, Importance Sampling, Monte           
Carlo, and other machine learning algorithms should be applied to streaming scenarios. Is there a               
streaming version of every batch algorithm? When is it hard or impossible to generate the streaming                
version? What are the typical performance and accuracy comparisons of streaming versus batch             
algorithms. Correspondingly is there a batch version of every streaming algorithm? How much processing              
should be done online and how much offline (batch)? 

 
We need to research steering scenarios involving active learning: for example a set of molecular               
dynamics simulations that drive towards rare events. Another example is machine learning classification             
algorithms that can take streams to improve (adaptively) their accuracy. 

​4.2​ Programming and Runtime Model; Languages 

White papers discussing this area include [WP2, WP4, WP7, WP11]. 
 

Current practice in programming models and runtime (both must be discussed) spans commercial             
solutions, open source (Apache) and domain-specific solutions. Additionally, there is tremendous           
diversity and rapid evolution in stream analytics programming models and systems. Furthermore there is              
no common understanding of application requirements and programming models, making them           
impractical to compare authoritatively. The workshop exposed the fact that the major science and              
commercial applications have significant differences. There is a need to identify best practices and              
computational paradigms that can raise the level of abstraction to simplify the programming tasks for               
end-users, removing the requirement of expertise in distributed computing, ad-hoc analytics and            
integrating diverse software packages. We expect that a few major software and hardware architecture              
will emerge covering the range of applications and that one will then need to design and build sustainable                  
ecosystems including core middleware and libraries. Note sec. 4.4 discusses producing community            
systems software and sec. 4.5 the hardware needed to support streaming systems. 

 
We heard about some particular research systems. StreamMapReduce [WP2] [P20] allows event stream             
processing to work with MapReduce.and extends fine-grained event driven execution models for            
large-data volumes. High-Performance Implementation of streaming models in MPI was presented in            
[WP11] [P23]. Neptune [P16] [Neptune16] and Twitter Heron [Heron15] addresses performance problems            
[WP17] in Apache Storm -- in particular those associated with Apache Kafka [Kafka15]. 

 
We heard from three impressive solutions from Industry -- Amazon, Google, Microsoft. It was interesting               
to see the transition in Google from MapReduce to Cloud DataFlow via FlumeJava and MillWheel. It                
would interesting to evaluate these systems and compare their approaches to workflow and streaming              
which are integrated. 

 
Some research issues uncovered included:need for programming abstractions and runtime support for            
adaptive and steered applications in large scale-simulation science; the concept of time is needed in the                
abstraction/programming model which is addressing time series processing; the performance of two big             
data languages -- Python and Java -- could be significantly improved if their compilers and runtime were                 

11 



approached in a way that is well understood for “simulation” languages C++ and Java; more               
understanding is needed of the Google concepts of bounded or unbounded and the relationship to batch                
and streaming programming;  
 
What are the (acceptable) costs of layers of abstraction? Practical programmers tend think in terms of                
conventional abstractions which are complex to map to streaming and dataflow concepts, but             
nevertheless there may well be benefit in doing so if it opens the field to a much broader range of users. A                      
relevant example from the HPC field is the PGAS programming model. A majority of practical               
programmers tend to think in terms of the von Neumann computing model where a unified memory is                 
updated as the computation proceeds. This model is however very difficult to scale up, leading to the                 
introduction of message passing models in HPC which can be efficient but are in turn difficult to program.                  
The PGAS programming model for HPC makes a minimal change to the von Neumann model by                
partitioning the memory into an area which is cheap to access (mapped to local memory) and the                 
remainder that is globally shared. This then presents a simple high-level abstraction to users which is                
mapped to message passing by the run-time system, introducing some efficiency loss but being much               
more friendly to the practical or even casual programmer.  
 
Similarly, there are other areas that provide potentially interesting and relevant approaches, e.g., SQL              
query optimization [WP16] hasn’t been fully exploited for distributed systems although this has been              
studied in the context of data streams [SQL02] [SQL04]; actor models -- natural for events -- should be                  
studied; maybe there are optimized Java virtual machines for streaming?; maybe there are optimized              
openStack style virtual machines for streaming? 
 
Another reason why processing streams is difficult compared to traditional batch jobs is the scheduling               
issue. Optimal stream scheduling where you also try to maximize a performance measure such as               
latency or throughput is NP-Hard. There are however possible stochastic solutions to the problem and               
additionally heuristics based on previous runs can be used to efficiently find good approximate solutions               
[AuroraSched03]. Further research on this could be of benefit to many streaming applications. There is               
also the trade-off between latency and throughput in streaming processing settings. Further research is              
needed to understand this and other stream optimizations [Hirzel14] better. 

 
We discussed the data model required for streaming; issues include efficient parallel data management ;               
are Spark RDD, AsterixDB and Tachyon important? Can one adapt ideas from adaptive meshing to               
handle key partitioning and sharding; is MPI-IO. and/or lessons from it useful?; do we only ingest into                 
edge elements? 

 
Domain specific Languages are a popular feature in many parallel computing areas. They do not seem to                 
have been explored deeply for streaming systems. In fact industry seems to use API’s (between services)                
and one should evaluate this approach. One needs more abstractions for streaming systems and good               
implementations that lower the programming burden.  
 
An interesting abstraction is map-streaming [Ogre14] which is a high level description of systems like               
Apache Storm that describes parts of the system but not all; for example it describes the pub-sub aspects                  
of Storm but misses its dataflow aspects, and additional need to support full parallel computation in some                 
applications such as SLAM in [WP17]. We also need to add the needed operators or primitives and                 
algorithms. The relation of these abstractions to workflow and its abstractions needs study. Perhaps there               
is an algebra for distributed streaming systems [Soule10, Soule12]. We do not expect a single solution                
but rather a family of solutions addressing different application classes -- such as those given in table 1.                  
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Further we emphasis that this is all work in progress -- much research, benchmarking and experimental                
systems building will be needed. 

  
The performance cost of using virtual machines -- especially those managed with systems like OpenStack               
-- needs more study. The overheads are going down but are still unnecessarily high -- partly due to                  
software drivers and partly to the overhead of managing sharing at core level. 
 
Streaming will always give rise to data movement, which needs to be integrated with processing               
efficiently. We certainly need data movement in parallel and that has often been hard to express and                 
implement when linking parallelism with dataflow. Google’s Dataflow name captures the data movement             
idea. GridGain (a commercial system built on Apache Ignite) captures the further idea that data doesn’t hit                 
disk unless necessary.  
 
There is no consensus as to data placement and programming models. Traditional science computing              
models are based on batch executables but that’s not appropriate for always-on event streams. Event               
and stream queries need novel data management and computing infrastructure, which needs to match              
the application requirements. 
 
We need ability to dynamically convert streams into scientific and analytical data types within workflows               
and make automated processing of such data possible at the rates that the data is being produced. 

 
The workshop asked about the possible use of software designed for exascale runtimes in streaming               
systems. For example, exascale adds support of dynamic inhomogeneous threads which could be very              
useful in streaming. 

​4.3​ Benchmarks and Application Collections and Scenarios 

We require an understanding of the true complexity and breadth of application requirements to make               
substantive progress on algorithm, programming models and software systems for stream data analytics             
and steering. Similar to “grand challenges” in domain sciences, the development of a series of               
representative streaming and steering examples will be of enormous value. These should include             
representative data sets at scale. Linear road [Bench04] is an early benchmark developed around Aurora               
streaming system focusing on one application. There may be a need for benchmark suites like TPC or                 
HPCC that foster collaboration between industry and the research community but we need benchmarks              
that cover the full complexity of the distributed streaming area. There is a clear need to investigate the                  
performance of streaming applications and software on clouds and HPC systems. This need is covered in                
this subsection for the applications and in the next subsection for software.  

 
Initial candidate benchmarks were given at the workshop in [WP2] [P20] (taxicab data) , [WP11] [P23]                
(based on STREAM memory benchmark), [WP16] (LinkedIn monitoring data) and [WP17] [P19] (SLAM             
robotic planning). Many of the other talks implicitly defined possible benchmarks: [WP1] [P5] [P7] with               
streaming Principal Component Analysis, [P13] with online clustering algorithms and [WP10] [P11] with             
smart electrical grid​s​. Other examples that convey the breadth of challenges associated with streaming              
include ATLAS-LHC analysis, Avionics, Drug Discovery and Galaxy Zoo [Galaxy16]. The inspiration for             
many of the benchmarks mus​t come from Industry and must involve interesting unrestricted datasets.              
Further we need to include benchmarks that present real time data from real time sources. A simple initial                  
task is to agree on a “Hello Streaming World” example. 
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We need a more comprehensive understanding of and classification of streaming applications (perhaps             
expanding table 1) to scope a benchmark set. This could build on the Dwarfs [Dwarf06] for parallel                 
computing and the Ogres [Ogre15] for big data applications. Some of the streaming ​characteristics              
include the type of events, the size of events, and the lifetime of events.  

 
We need some number N (6-20?) of exemplar problems that identify use cases clearly and are well                 
described. From this collection, we can work on challenges, abstractions, scaling, theory, stream             
operators, algorithms, languages and tools. We can look at them implemented with current software on               
current hardware and see what works and what doesn’t. This process will generate a robust benchmark                
set. Note some examples can involve actual streaming data and others a repository of data that can be                  
used to generate streams. 

​4.4​ Streaming Software System and Algorithm Library 

We need to assemble a general purpose high-utility open source scientific streaming software library that               
can be used by the community. It should be carefully integrated with the Apache Foundation software. It                 
would hold enhancements to Apache software (for example Apache Storm and Mahout) as well as               
standalone software. It would contain systems (middleware) and algorithms and would be streaming             
analog to SPIDAL and MIDAS [Spidal15]. It would have ​broadly applicable functions, support data reuse,               
and implement a suite of algorithms exploiting key streaming ideas such data sketches and certainly the                
challenges highlighted in NRC’s computational giants. It would also have core capabilities such as state               
of art tools to allow Java and Python to run at high performance. 

 
We need to aim at a toolkit that will support the stringent requirements of the major streaming science                  
applications but is architected so same toolkit can be used across domains including LHC analysis, light                
sources, astronomy and simulation data. The development of a community toolkit should not occur before               
the primary set of requirements and existing system support are understood and have stabilized. 

​4.5​ Streaming System Infrastructure and its Characteristics 

Although there is significant progress in developing streaming system software as discussed in sec. 4.2,               
there is no clear consensus on the type of hardware best suited to host this software. Rather communities                  
use existing systems designed for other applications-- clouds or HPC -- to support streaming solutions. Of                
course if we include the sources of the data, any system must be distributed and must be scalable.                  
Appropriate infrastructure may differ for research and production systems; it may also differ across              
application classes. 

 
Then we need to understand differences in hardware, systems software and algorithms for the current               
batch bounded model and the newer unbounded streaming and interactive processing models. Are we at               
a point where unbounded tasks become a significant part of the workload and justify dedicated hardware? 

 
Note that some communities such as ATLAS at LHC [WP12] [P26] are moving to a streaming model as                  
reduce costs by reducing replica count and data transfer. This only works if streaming systems achieve                
high performance and are cost-effective. Simply good performance -- achieved by adding more nodes to               
our cloud -- is not enough unless cost of streaming model is less than traditional approaches as for                  
example used today by the LHC. 
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Important system issues include latency in cloud-fog response and at the device level, power              
consumption. We have already stressed the need to understand what processing should be done at the                
three levels -- sensor (data source), fog (shared resources near source) and “cloud” (backend system).               
As well as performance there are cost and security issues in this choice. As well as hardware, these                  
issues are all software challenges. 

 
It is not clear if choice of HPC and Cloud infrastructures are intrinsic features of applications (commercial                 
applications are different from scientific ones), software (are systems like Apache Storm biased to clouds)               
or perhaps both clouds and HPC are efficient and cost-effective. We need more comparisons between               
HPC and cloud implementations for the same application.  

 
One important consideration is the cluster interconnection network performance requirements; one might            
expect that streaming data would need good network bandwidth but not the same latency seen in MPI                 
(publish-subscribe systems tend to have millisecond and not microsecond latency). We expect it will be               
important to support interoperability between clouds and HPC clusters and to allow users to easily scale                
the size of their solution system.  

 
As in sec. 4.5, we expect major challenges like streaming for ATLAS will develop much higher                
performance science streaming software tools and this would then allow more meaningful evaluations of              
needed hardware. Current solutions like Apache Storm do not match performance of commercial systems              
like Amazon Kinesis and will not meet ATLAS requirements. If we build a community as discussed in sec.                  
5, we can use answers to questions posed above to present community requirements to the hardware                
vendors. 

​4.6​ Steering and Human in the Loop 

White papers discussing this area include [WP3, WP5. WP6, WP7, WP8, WP9, WP15] and see [AIM15]. 
 
In many cases it is essential that a human guides the automatic responses to event streams and there is                   
limited software support to enable this in current analytics systems. These cases range from avionics,               
where a pilot’s decisions may be a matter of life or death, to cases when human expertise might identify                   
regions or candidates of interest that need to be studied in greater detail in computational simulations or                 
the drug discovery process. Another relevant use cases arises from light-sources such as APS/ALS as               
well as other experimental and observational facilities where a basic requirement is the integration of               
streaming data into analysis-simulation pipelines with humans in the loop. Further large scale simulation              
science motivates data and human-driven control for steering application/simulations. A final example is             
the steering of a UAV based upon real-time analysis of data received from the drone. Research ranging                 
over systems, visualization and human computer interaction is needed to integrate human and computing              
knowledge into decision processes. 

 
The NRC Frontiers in Massive Data Analysis report has a full chapter on “Human Interaction with Data”.                 
This covers Data Visualization and Exploration, as well as crowdsourcing and Hybrid Human/Computer             
Data Analysis. In this workshop, crowdsourcing was not discussed and visualization was not stressed. In               
latter, the importance of Python and Pandas was noted and the challenge of visualizing high dimensional                
time series was posed. 
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General challenges in this area include: getting a deeper understanding how scientists interact with              
streams; understanding how ​Human Computer Interaction ​HCI principles should be used; achieving            
scalability for both the algorithms and as well for tightly coupled workflows across different programming               
languages and models; how the system can maintain message ordering in spite of the high data                
volumes.; establishing and verifying ground truth; providing reproducibility in a highly adaptive            
environment with extensive user interaction, input and steering. 

 
Looking at Transmission Electron Microscopy TEM and many related use cases, one can ask: how               
steering towards very rare events is managed; and secondly how one manages scenarios that depend               
upon both human and computing awareness.  

 
Steering needs more attention -- partly because it is not a significant consideration in some major                
industrial applications where (near) real-time user interaction is not essential. Steering needs to be built in                
at all levels of system -- not just added at user level. ​Steering application types include: Steering the                  
simulations, steering the sensors, steering the coupling/stream. We can pose this an optimization             
problem. Looking at industry, ​applications like connected vehicles could involve steering but software like              
Apache Storm does not directly support steering.  
 
Steering opens up many issues related to resource management. There is a contrast between Dynamic               
Resources Management for steering and approaches based on Adaptive Workflow. 

 
Steering can be considered as ​hypothesis based reasoning. ​A general research question is to understand               
how, when and where to intercede in automated reasoning. We need to give users just the right amount                  
of information and to have a clear logical model for steering. Note that ​scientists are often more                 
comfortable steering the instrument, as opposed to relying on a machine learning algorithm. We must               
understand how to select a division of decision making between system and human. ​We need to                
understand the dividing line between human knowledge and computing knowledge in a system that has a                
broad range of tuning parameters? As in [WP10], we must often have baseline observations to identify                
normal behavior, and then design a response as a function of violation of accepted tolerance values. 

​5​ Build and sustain community 

The workshop was well-received and deemed successful by the participants. It was viewed as an               
interesting start to the development of a community with a good mix of participants and much potential for                  
a community to be expanded. There was a critical recognition that the topic is in need of further attention                   
because of its growing importance. The workshop participants felt that the diverse nature of the nascent                
community was well represented by the workshop attendees and the topics presented. There was a               
strong support for establishing and enhancing this community and supporting and encouraging variety of              
community activities.  

​5.1​ Community Activities 

There were several suggestions for community building activities starting with expanding the            
STREAM2015 workshop website ​http://streamingsystems.org to a clearinghouse of community         
information and activities. Additional efforts will be required to organize community activities including             
application surveys, special issues, workshops, and industry engagement through advisory committees.           
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The community would have as usual multiple subgroups covering topics including those we identified in               
this meeting and report. 

 
We will organize the STREAM 2016 workshop which will be informed by the results of this workshop and                  
hopefully broaden the community as well as covered applications and technologies. It has a DoE focus                
and we discussed ​reaching out to the DOE Light and Neutron sources and trying to cover all relevant                  
DOE applications. It was suggested that we look at other ASCR workshops as some white papers there                 
discuss streaming. The “Data Management, Analysis and Visualization for Experimental and           
Observational Data (EOD) Workshop” [EOD15] held recently was highlighted. 

 
Several existing conference and meeting venues were discussed to grow the community. A BoF or               
workshop as SC’16 was seen as promising. Efforts to engage additional key people and activities that                
could not make it to STREAM 2015 should continue. This includes industry representatives from GE, IBM,                
FB, Twitter and the financial sector. 
 
The application benchmarks and streaming software libraries discussed in secs. 4.3 and 4.4 are clearly               
valuable community resources. As a precursor to these collections, we could consider a survey of ​existing                
software systems (highlighting those in open source) and a survey of applications - existing and potential.                
These surveys can be analyzed to refine research challenges. ​We could also consider streaming data               
challenges following either the successful provenance challenge [Provenance08] or those popularized by            
Kaggle [Kaggle15]. Work with Apache on software systems such as an improved Storm [Storm15] was               
supported. 

 
The need for a crisp definition of Streaming systems as an elevator speech was stressed. Our community                 
organization could act as a broker for summer student opportunities. We also discussed journal special               
Issues and an edited book. 

​5.2​ Education and Training 

Streaming data applications are seen as critical to economic growth and development, and they present a                
tremendous opportunity for workforce development. In addition, a growing number of scientific and             
engineering disciplines are being inundated with streaming data, either from observational facilities or             
through simulations. As a result, an understanding of the emerging tools and environments for streaming               
data will become increasingly important for future skilled workers. Understanding the best practices and              
developing curriculum support was universally regarded as essential at the workshop. Industrial            
participants agreed there is tremendous, and growing, demand for the skills that the current community is                
only now discovering.  

 
Brunner [P8] stressed the relationship between a streaming systems curriculum and the broader area of               
data science and the discussed an interesting link to a data science incubator at UIUC. Braverman                
(​http://www.cs.jhu.edu/~vova/​) has already integrated a discussion on new algorithms needed for           
streaming data into courses. The workshop participants widely agreed that data science education, and in               
particular education in streaming data applications, requires realistic datasets---in particular from industry.            
This point reflects the previous discussion in sec. 4.3. 

17 

http://www.cs.jhu.edu/~vova/


​6​ Summary 

This report presents a summary of discussions of 43 attendees at the STREAM2015 workshop together               
with information presented in 29 presentations and 17 white papers. Streaming data is of growing               
importance in the number of applications, the volume of data in each application and the sophistication of                 
the analytics applied. The study of streaming data is not a new field but there are few activities directly                   
tackling it. Rather streaming data is often viewed as a byproduct of other topics such as particular                 
experiments, real-time systems, publish-subscribe middleware or associated with domains like          
cyber-physical systems or online collaboration. The result is a paucity of research and a lack of                
understanding as to how to set up hardware and software infrastructure to best deal with streaming data.  
The design of distributed computing infrastructure that supports streaming data as a first class capability               
and not an adjunct consideration, is a major interest of both NSF and DoE as they design and deploy                   
National distributed computing infrastructure, to support the analysis of streamed observational data.  
 
The meeting covered existing technology, and divided current approaches to into four areas:             
commercial, Apache Foundation software-based, domain specific, and finally research systems. The           
current solutions and future research were discussed for two major themes -- new algorithms and               
programming model/run-time. There has been significant research into interesting aspects of online            
(streaming) algorithms; these include efficiency (only touch each data-point once), sampling (of huge             
datasets) but there is modest practical use and attention to issues like parallelism. For programming               
models, highlights included need to move away from traditional batch scheduling, the challenges of              
performance and fault-tolerance plus the identification of application requirements and in particular the             
differences between commercial and research streaming data.  
 
Although we identified 8 categories of applications, we believe there is a need for more detailed                
categorization, an analysis of software and hardware infrastructure requirements and development of            
associated “mini-applications” for use in research and testing.  
 
The importance of the area, the significant number of interesting challenges and enthusiasm of              
participants motivated discussion of forming a formal “streaming data” community. This could guide and              
certify application surveys, journal special issues, workshops, industry engagement through advisory           
committees, and Education and Training. Further it could act as steward of collections of important               
software as well as benchmarks.  
 
The many open issues will be addressed in the next STREAM2016 workshop. 
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P2. Pete Beckman, ​Array of Things    ​[​video​] [​pdf​] 
P3. Jelena Pjesivac-Grbovic, ​Google Cloud Dataflow ​[video] [​pdf​] 
P4. Justin Wozniak, ​Streaming, Storing, and Sharing Big Data for Light Source Science  ​[​video​] 

[​pdf​] 
P5. Alex Szalay, ​Streaming Problems in Astrophysics  ​[​video​] [​pdf​] 
P6. Bojan Nikolic, ​Data Processing for the Square Kilometre Array Telescope ​[​video​] [​pdf​] 
P7. Vladimir Braverman, ​Streaming Algorithms for Cosmological Simulations and Beyond     ​[​video​] 

[​pdf​]  
P8. Robert Brunner, ​Breaking Data Science  ​[​video​] [​pdf​] 
P9. Yanif Ahmad, ​Accelerating Scientific Discovery through Data-Driven Control and Real-Time 

Analytics    ​[​video​] [​pdf​] 
P10. Erik Paulson and Samuel Hamilton, ​IIOT at Johnson Controls  ​[video] [​pdf​] 
P11. John Wu, ​Baseline in Streaming Data Analysis: What, Why, and How?  ​[​video​] [​pdf​] 
P12. Madhav Marathe,​ Real-Time Network Science     ​[​video​] [​pdf​]  
P13. Judy Qiu,​ Parallel Clustering of High-Dimensional Social Media Data Streams  ​[video] 

[​pdf​] 
P14. Von Welch, ​Urban Sensor Data Privacy Issues: Findings of the Array of Things (AoT)  ​[​video​] 

[​pdf​]  
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Analysis in Motion (AIM) ​[​video​] [​pdf​] 
P16. Shrideep Pallickara, ​Real-Time Stream Processing For Sensing Environments  ​[​video​] 
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P17. Martin Swany, ​In-Network Processing for Streaming Data      ​[​video​] [​pdf​] 
P18. Dan Fay, ​Streaming on Microsoft Azure    ​[video] [pdf] 
P19. Supun Kamburugamuve, ​Streaming Applications for Robots with Real Time QoS    ​[​video​] 

[​pdf​]  
P20. Andre Martin, ​StreamMapReduce: When Stream Processing crosses MapReduce    ​[​video​] 

[​pdf​] 
P21. Ilkay Altinas, ​Dynamic Data-Driven Applications using Workflows as a Programming Model 

for Scalable and Reproducible Streaming and Steering    ​[​video​] [​pdf​] 
P22. Milinda Pathirage, ​Distributed Streaming SQL    ​[​video​] [​pdf​] 
P23. Stefano Markidis, ​Streaming Programming Systems for Exascale    ​[​video​] [​pdf​]  
P24. Joshua Suetterlein, ​Toward a Unified HPC and Big Data Runtime    ​[​video​] [​pdf​]  
P25. Carlos Varela, ​Dynamic Data-Driven Avionics Systems: Inferring Failure Modes from Data 

Streams    ​[​video​] [​pdf​]  
P26. Torre Wenaus, ​Science-Aware Dynamic Data Delivery at the Exascale    ​[​video​] [​pdf​]  
P27. Maryam Rahnemoonfar, ​Real time Oil and Gas source Identification using Unmanned Aerial 

Systems   ​[​pdf​] 
P28. Xiangbo Li, ​CVS: A Cost-Efficient and QoS-Aware Cloud Video Streaming    ​[​video​] [​pdf​] 
P29. David Crandall, ​Streaming Deep Learning for Robotics and Mobile Cameras    ​[​video​] [​pdf​] 
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WP3. Title: ​Dynamic Data-Driven Applications using Workflows as a Programming Model for 
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Diego 

WP4. Title: ​Toward a Unified HPC and Big Data Runtime​; Authors: Joshua Suetterlein, Joshua 
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Wozniak, Kyle Chard, Ben Blaiszik, Michael Wilde, Ian Foster; Institution: Argonne National 
Laboratory, University of Chicago 
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WP11. Title: ​Streaming Programming Systems at Exascale​; Authors: Stefano Markidis, Ivy Bo Peng, 
and Erwin Laure; Institution: KTH Royal Institute of Technology 

WP12. Title: ​Science-Aware Dynamic Data Delivery at the Exascale​; Authors: M. Ernst, A. 
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Computer Studies (CACS), University of Louisiana Lafayette 

WP14. Title: ​Urban Sensor Data Privacy Issues: Findings of the Array of Things (AoT)​ Privacy 
Breakout Group; Authors: Von Welch, Charlie Catlett; Institution: Indiana University, Argonne 
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WP15. Title: ​Dynamic Data Driven Avionics Systems​; Authors: Carlos Varela; Institution: Rensselaer 
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and Beth Plale; Institution: School of Informatics and Computing, Indiana University 
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